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Abstract 
It is well known that a broad class of non bandlimited 

signals can be reconstructed from uniformly spaced samples 
by relating the problem to the inversion of a digital filter. 
This simple idea has given rise to many applications, some 
of them quite sophisticated. This includes spline interpola- 
tion, fractionally spaced equalization (FSE) of noisy chan- 
nels and more recently, rational FSEs. On the theoretical 
front, it has given rise to the idea of biorthogonal partners 
which unify many aspects of wavelet theory into the same 
framework. In this paper we give an overview of the main 
results in this area.^ 

1    Introduction 
The uniform sampling theorem for bandlimited signals 

is a well-understood concept that is widely used in digital 
signal processing. However, during the last decade or so it 
has been noted by many authors [21, 11] that bandlimit- 
edness is not a necessary condition for signal reconstruc- 
tion from uniform samples. In fact, the bandlimited signal 
model is just one in the class of signal models that allow 
for reconstruction. For example, consider a continuous- 
time signal that can be modeled as 

x{t)=   ^   c{k)<l>{t-k), (1) 
«:=- 

where 4>{t) is a known function. If 4>{t) happens to be ban- 
dlimited to some frequency a then t':e summation (1) is 
also bandlimited and x(t) can be reconstructed from uni- 
form samples taken at the appropriate rate. Now suppose 
that (j){t) is not bandhmited, but satisfies the Nyquist(l) 
condition; in other words <j>{n) = S{n). For example 4>{t) 
can be the unit-amplitude square pulse supported between 
-1/2 and 1/2. Then (1) becomes 

OO 

x{t)= J2 ^ik)<j>{t-k), 

which at the same time represents the reconstruction for- 
mula for x{t) from its samples. More generally, as we will 
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see in Section 2 the reconstruction of signals admitting the 
model (1) depends mostly on the properties of the model 
function 4>{t) or rather the discrete time Fourier transform 
of the sampled version (j>{n). These extensions of the clas- 
sical sampling theorem first found application in the all- 
digital signal interpolation [8]-[10] and least squares signal 
approximation [9, 15]. Later on they led to the develop- 
ment of theoretical concepts such as biorthogonal partners 
[15], which were further extended to the case of vector 
signals [19, 20] and fractional biorthogonal partners [16]- 
[18]. These developments provided the common grounds 
for some concepts in wavelet theory [2] and signal inter- 
polation, but also shed new light on some equalization 
methods in digital communications. Examples include the 
zero-forcing (ZF) charmel equalization using fractionally 
spaced equalizers (FSE) with integer [6] and rational over- 
sampling factors [4, 5]. In this paper we give an overview 
of the main results in this area with a focus on biorthog- 
onal parters and their applications. Some of the recent 
overview papers with a special emphasis on the sampling 
results for non bandlimited signals include [7, 12, 14]. 

1.1    Notations 
If not stated otherwise, all notations are as in [13]. Bold 

faced uppercase letters denote matrices. The term cr-BL 
refers to signals that are bandlimited to |u;| < a. We 
use the symbol J, M in a block diagram to denote the 
decimation operation, which can be applied on scalars or 
vectors. A decimator turns x{n) into x{Mn). Similarly, 
the expanded version of x{n) 

( x{n/M)    for n = mul of M, 
I- 0 otherwise 

is obtained as a result of the expander operation which is 
denoted by the symbol T M. The decimated and expanded 
versions of a;(n) are denoted by lx{n)]iM and [x{n)]^M and 
the corresponding z-transforms by [X{Z)]IM and [X(Z)]TM 

respectively. In situations where the z-transform does not 
exist in the conventional sense, notation z stemds for e'". 
The subscript d denotes discrete-time signals, whenever 
there is ambiguity. 
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Figure 1:  (a)-(b) System for all-digital interpolation 
of a signal x(n). 
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2    Signal models and interpolation 
Consider a non bandlimited signal x{t) and suppose it' 

admits the model (1). Now consider its integer samples 

Figure 2: (a)-(b) Interpretation of fractional biorthog- 
onal partners using a block diagram. 

x{n) =   y^   c{k)4>{n — k). (2) signal can be expressed as 

iK^ 
We see that (2) represents a discrete-time convolution. De- 
noting the discrete-time Fourier transforms of x{n), c{n) 
and (j){n) by Xd(e^"), C(e-'") and $<i(e^") respectively, we 
have Xd{e'^') = C(e^")$d(e^'^). Therefore, we can re- 
trieve the driving sequence c{n) from x{n) by inverse fil- 
tering whenever $d(e-''^) does not vanish on the unit circle: 
C(e^") = Xd(e^")/<E>d(c^"). At the same time, this de- 
scribes the reconstruction of x{t) from its integer samples. 
After obtaining c{n) by passing x{n) through \/<^d{z), we 
just need to substitute it in (1) to obtain x{t). 

Prom the previous discussion it follows that the class 
of signals that can be reconstructed from integer samples 
is much broader than the class of bandlimited signals. As 
an example, consider any <j){t) that is QTT-BL, for a > 1, 
and such that $0'w) is real and positive in the region of 
support. Then $d(e-'") > 0, for all w € [-■TT, TT] and the 
reconstruction of x{t) is possible from samples obtained 
at the rate a times lower then the one suggested by the 
Shannon's result. 

Obviously, the successful reconstruction of x(t) is con- 
tingent upon the accuracy of the model (1) and in particu- 
lar on knowing the model function <f>{t). Given an arbitrary 
signal x{n) and any function (^{t) such that $d(e^'^) ^ 0 for 
all u> we can assume that x{n) is obtained as in (2). On the 
other hand the eissumption that such x(n) is obtained by 
sampling x{t) from (1) is in general not valid for any choice 
of 4){t). However, in many intrinsically ill-posed problems 
(such as signal interpolation) there is no "correct" solu- 
tion, and (t>{t) is chosen so that the assumed underlying 
signal x{t) satisfies some desired properties. Taking sig- 
nal interpolation as an example, the choice of 4>{t) is often 
some smooth function so that the resulting interpolant is 
visually pleasing. In the case of spline interpolation [9, 10] 
4>{t) is taken to be a B-spline [3] of a particular order, de- 
termining the degree of smoothness, whereas in the case of 
least squares approximation it is the basis function of the 
approximation subspace. 

In order to understand how interpolation is performed, 
consider once more the model (1). To interpolate signal 
x{n) by an integer factor K amounts to obtaining the sig- 
nal x{n/K) with finer spacing between its samples. Such 

xin/K)=   Yl  <i)'i>C^-^)=   E  c{i)fK(n-iK), 
i=—oo z=—cxj 

(3) 
where /xCn) = (t>{n/K). This equality is depicted in Fig. 
1(b), while from the previous discussion we recall that the 
driving sequence c{n) is obtained from x{n) as shown in 
Fig. 1(a), whenever the filtering is stable. It has been 
shown in [9] that in the case of B-splines the filter in ques- 
tion is IIR with half of its poles lying outside (but none on) 
the unit circle. Thus l/$<f(2) can be realized as a two-pass 
noncausal yet stable filter. The beauty of this approach is 
that the complete interpolation process is performed in the 
discrete domain. Moreover, once the driving sequence has 
been obtained, other image processing operations such as 
rotation, least squares smoothing (denoising) and edge de- 
tection can be more easily performed in this domain [10]. 

3    Biorthogonal partners 
In the following we review the notion of biorthogonal 

partners first introduced in [15]. They provide a connec- 
tion between several different areas of signal processing 
such as signal interpolation, sampling, least squares mod- 
eling and even channel equalization in digital communica- 
tions. Biorthogonal partners were also introduced in the 
case of vector signals (MIMO biorthogonal partners) [19]. 
Apart from that, the idea was extended for the case where 
signals are oversampled by fractional amounts. This gives 
rise to the notion of fractional biorthogonal partners (FBP) 
introduced in [17]. Even though biorthogonal partners can 
be considered as a special case of the latter two, in this sec- 
tion we will interchangeably consider both biorthogonal 
partners and FBPs in order to point out the important 
properties pertaining to one or the other. 

Definition 1. Biorthogonal partners. Two transfer 
functions F{z) and H{z) are said to be biorthogonal pairt- 
ners of each other with respect to an integer L if 

Po(z) = [H{z)F{z)]^^ = 1. (4) 

In other words, the convolution of h{n) and /(n), namely 
p{n) is Nyquist(L). It can be shown that Po(z) defined in 
(4) is indeed an LTI system and is nothing but the zeroth 
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Figure 3: (a)-(b) Equivalent presentations of fractional biorthogonal partners. 

L-fold polyphase component [13] of P{z). Now consider 
Fig. 2 with L, M > 1. Then H{z) is said to be a right frac- 
tional biorthogonal partner (FIFBP) of F{z) with respect 
to the fraction L/M if c{n) = c{n), for any c{n). In other 
words, if the system shown in Fig. 3(a) is identity. At the 
same time we say that F{z) is a left fractional biorthogonal 
partner (LFBP) of H{z) with respect to L/M. Note that 
whenever L and M are coprime^ the system in Fig. 3(a) 
is not LTI, so we cannot write its transfer function as in 
(4). Also note that in the fractional case the biorthogonal 
partnership is not symmetric, so we distinguish between 
left and right FBPs. 

In order to see how (fractional) biorthogonal partners 
fit into the sampling framework described before, suppose 
we are given the discrete-time signal y{n) that is obtained 
by sampling x{t) from (1) at the rate L/M, i.e. y{n) = 
x{nM/L). Thus y{n) is obtained by oversampling x{t) by 
a factor of L/M with respect to the usual integral sampling 
strategy. As shown previously, 'd M = L = 1 (or for that 
matter if M = L) the reconstruction of x{t) from y{n) 
is possible [under some mild conditions on <f>{t)], however 
only by using IIR filters l/^d(z). We shall see shortly 
that if L > M the reconstruction is often possible using 
FIR filters only. First note that 

A/f °° 
y{n) = x{—n)=   ^   c{k)fUMn - kL),        (5) 

k=—oo 

where fL{t) = 4>{t/L). Thus, y{n) can be obtained as 
shown in Fig. 2(a). It is apparent from Definition 1, that 
the reconstruction of the driving sequence c{n) [and thus 
x{t)\ can be performed as in Fig. 2(b) whenever there ex- 
ists a RFBP H{z). Moreover, if for an FIR F{z) there 
exists an FIR H{z), the signal reconstruction can be per- 
formed using only FIR filters. Next we answer the question 
when is such (FIR) reconstruction possible. Define the fil- 
ters Pk{z) and Qk{z) for 0 < fc < L - 1 as 

Pk{z) = z'''Fk{z),   and Qk{z) = z'"'Hk{z).      (6) 

Here Fk{z) and Hk{z) are the L-foId Type-2 and Type- 
1 polyphase components of F{z) and H{z), respectively 
defined as [13] 

i-i 

F{z) = Y, Fk{z'')^\   and  H{z) = ^ Hk{z'')z-''   (7) 
fc=0 it=0 

•^Problem can always be formulated so that L and M are 
coprime by reducing both numbers by their gcd. 

and I is an integer such that IL -f mM = 1 (for another 
integer m). Recall that such m and I exist whenever L and 
M are coprime. Under this assumption it can be shown 
[17] that the system from Fig. 3(a) is equivalently redrawn 
in Fig. 3(b). The matrices 'E{z) and R(z) consist of the 
Type-1 and Type-2 M-fold polyphase components of filters 
Pk{z) and Qk{z), namely Eij{z) and Ri,j{z) defined as 

A/-1 M-1 

Pk{z) = Yi EkAz^')z-\ and Qk{z) = ^ Rt,k{z'')z\ 

(8) 
It follows from Fig. 3 that finding a RFBP of F{z), or 
equivalently reconstructing c{n) from the samples x{n), 
is completely equivalent to finding a left inverse of E(2). 
The conditions for the existence of an (FIR) solution are 
summarized in the following theorem [17]. 

Theorem 1. Given the transfer function F{z) and 
two coprime integers L and M, there exists a stable right 
fractional biorthogonal partner of F{z) if and only if L > 
M, and the minimum rank of E(e^") pointwise in w is M. 
For an FIR filter F{z) there exists an FIR right fractional 
biorthogonal partner if and only if L > M, and the greatest 
common divisor (gcd) of all the M x M minors of E(z) is 
a delay. Here, the polyphase matrix E(z) is defined by 
(6)-(8). Analogous results hold for left FBPs as well. 

Note that whenever the conditions for the existence of 
FIR FBPs are satisfied, these solutions are not unique. 
This is a consequence of the construction for left polyno- 
mial inverses of tall polynomial matrices, or equivalently 
right polynomial inverses of fat polynomial matrices [1]. 
We will exploit this nonuniqueness in the process of con- 
structing FIR zero-forcing fractionally spaced equalizers 
for communication channels (see Section 4.1). 



In the case of biorthogonal partners (A/ = 1) the in- 
version problem from Theorem 1 becomes that of finding 
(FIR) filters Hkiz), 0 < k < L-1 such that 

L-l 

^ Hk{z)F,(z) = 1, (9) 
fc=0 

with Hk(z) and Fk{z) denoting the polyphase components 
defined in (7). It can be shown that in this case a biorthog- 
onal partner of F{z) exists if and only ii Fk{z) do not share 
a common zero and an FIR biorthogonal partner exists if 
and only if the gcd of Ffc(z), 0 < fc < L - 1 is a delay. 
In that case, the corresponding FIR filters Hk{z) can be 
constructed using the generalization of the Euclid's algo- 
rithm. Alternative formulations of the existence conditions 
for (FIR) biorthogonal partners can be found in [15]. 

Finally, we note that these results have also been ex- 
tended in [19, 20] to the case of MIMO biorthogonal part- 
ners. For example, in the case of matrix transfer functions, 
there will exist an FIR LBP of a polynomial matrix F{z) 
if and only if the greatest right common divisor (grcd) 
of the polyphase components Fk{z) is a unimodular ma- 
trix [1]. As was the case with FBPs the construction of 
FIR MIMO biorthogonal partners (when they exist) is not 
unique. It has been shown in [20] that finding an FIR LBP 
is equivalent to finding a left polynomial inverse of a matrix 
[Fliz) Ff{z) ■■■ Fl_i{z)f. This problem was fiirther 
considered in light of the Smith form decomposition [1] 
and the nonuniqueness of the solution was exploited in the 
construction of vector channel equalizers. Since the opti- 
mization process is very similar to the construction of FIR 
FBPs, in the next section we will consider only the latter. 

4    Applications of FBPs 
In this section we consider two applications of fractional 

biorthogonal partners, namely the construction of zero- 
forcing FSEs with fractional oversampling (a problem that 
has been considered before in several contexts [4, 5]) and 
the all-FIR interpolation of slightly oversampled signals. 

4.1    FSEs with fractional oversampling 
It has been shown in [17, 18] that the discrete-time 

equivalent of the communications system with signal over- 
sampling by a factor of L/M (L > M) at the receiver 
is essentially given by Fig. 3(a). Here F(z) is the com- 
bined effect of the channel and pulse shaping filters, sam- 
pled at rate L/T, while H{z) represents the zero-forcing 
fractionally-spaced equalizer (ZF FSE). In addition to this, 
the received signal y{n) is corrupted by additive channel 
noise. The goal is to construct a ZF FSE [thus a RFBP 
of F{z)] that also attenuates this noise. The construction 
of such solution is described in [17] and is made possible 
by the fact that FIR RFBPs are not unique. In the upper 
part of Fig. 4 we compare the performance of four equal- 
ization methods: symbol-spaced equalizer (SSE) which is 
just the channel inverse, plain RFBP (without noise op- 
timization), optimal RFBP as constructed in [17] and the 
MMSE solution in the FSE case. Even though its per- 
formance is slightly inferior, it turns out that the optimal 

RFBP exhibits some computational advantages over the 
MMSE solution. In particular in the white noise case the 
optimal RFBP is independent of the estimated noise vari- 
ance, while the dependency of the MMSE solution on the 
noise variance discrepancy defined as a^ = o'est/'^oct is 
shown in the lower part of Fig. 4. 
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Figure 4: Performance curves. (Upper) Probability 
of error as a function of SNR in the four equalization 
methods. (Lower) Probability of error as a function of 
noise variance discrepancy a. 

4.2    Interpolation of oversampled signals 
As opposed to traditional spline interpolation described 

in Section 2 where noncausal IIR filters were used for signal 
reconstruction, here we show that if the original signal can 
be assumed to be a spline oversampled by just L/M, then 
all-FIR interpolation is possible. To see this, note that 
if y{n) = x{nM/L) is a third order spline oversampled 
by L/M, then it assumes the model shown in Fig. 2(a), 
where f{n) is obtained by sampling the cubic spline at 
multiples of 1/L. Reconstruction of the driving sequence is 
possible as shown in Fig. 2(b), where in this case a RFBP 
H{z) can be made FIR. Having obtained c(n) we construct 
spline interpolants by the total arbitrary amount of K ■ 
{M/L) as shown in Fig. 1(b). An all-FIR interpolation is 
demonstrated in Fig. 5. 

5    Concluding remarks 
Recent interpretations of sampling theorems for non 

bandlimited signals have led to several new concepts, like 



Figure 5: FIR interpolation example: a region of the 
image oversampled by L/M = 6/5 and its cubic spline 
interpolation by a factor of MK/L = 5/3 obtained 
using FIR filters. 

biorthogonal partners and fractional biorthogonal part- 
ners. Their significance lies in the fact that they help 
better understand the subtleties of sampling and recon- 
struction processes and provide a connection between this 
and several other areas of signal processing. In addition to 
this, they have given rise to several new applications. In 
this paper we presented an overview of these issues. 
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